Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.

Identifieur interne : 000115 ( Main/Exploration ); précédent : 000114; suivant : 000116

Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.

Auteurs : Jie Zhang [République populaire de Chine] ; Shengwei Zhu [République populaire de Chine] ; Ning Ma [République populaire de Chine] ; Lee J. Johnston [États-Unis] ; Chaodong Wu [États-Unis] ; Xi Ma [République populaire de Chine]

Source :

RBID : pubmed:33174230

Abstract

In a complex, diverse intestinal environment, commensal microbiota metabolizes excessive dietary tryptophan to produce more bioactive metabolites connecting with kinds of diverse process, such as host physiological defense, homeostasis, excessive immune activation and the progression and outcome of different diseases, such as inflammatory bowel disease, irritable bowel syndrome and others. Although commensal microbiota includes bacteria, fungi, and protozoa and all that, they often have the similar metabolites in tryptophan metabolism process via same or different pathways. These metabolites can work as signal to activate the innate immunity of intestinal mucosa and induce the rapid inflammation response. They are critical in reconstruction of lumen homeostasis as well. This review aims to seek the potential function and mechanism of microbiota-derived tryptophan metabolites as targets to regulate and shape intestinal immune function, which mainly focused on two aspects. First, analyze the character of tryptophan metabolism in bacteria, fungi, and protozoa, and assess the functions of their metabolites (including indole and eight other derivatives, serotonin (5-HT) and d-tryptophan) on regulating the integrity of intestinal epithelium and the immunity of the intestinal mucosa. Second, focus on the mediator and pathway for their recognition, transfer and crosstalk between microbiota-derived tryptophan metabolites and intestinal mucosal immunity. Disruption of intestinal homeostasis has been described in different intestinal inflammatory diseases, available data suggest the remarkable potential of tryptophan-derived aryl hydrocarbon receptor agonists, indole derivatives on lumen equilibrium. These metabolites as preventive and therapeutic interventions have potential to promote proinflammatory or anti-inflammatory responses of the gut.

DOI: 10.1002/med.21752
PubMed: 33174230


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.</title>
<author>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Shengwei" sort="Zhu, Shengwei" uniqKey="Zhu S" first="Shengwei" last="Zhu">Shengwei Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Ning" sort="Ma, Ning" uniqKey="Ma N" first="Ning" last="Ma">Ning Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Lee J" sort="Johnston, Lee J" uniqKey="Johnston L" first="Lee J" last="Johnston">Lee J. Johnston</name>
<affiliation wicri:level="2">
<nlm:affiliation>West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Chaodong" sort="Wu, Chaodong" uniqKey="Wu C" first="Chaodong" last="Wu">Chaodong Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Nutrition and Food Science, Texas A&M University, College Station, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xi" sort="Ma, Xi" uniqKey="Ma X" first="Xi" last="Ma">Xi Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33174230</idno>
<idno type="pmid">33174230</idno>
<idno type="doi">10.1002/med.21752</idno>
<idno type="wicri:Area/Main/Corpus">000015</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000015</idno>
<idno type="wicri:Area/Main/Curation">000015</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000015</idno>
<idno type="wicri:Area/Main/Exploration">000015</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.</title>
<author>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Shengwei" sort="Zhu, Shengwei" uniqKey="Zhu S" first="Shengwei" last="Zhu">Shengwei Zhu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Ning" sort="Ma, Ning" uniqKey="Ma N" first="Ning" last="Ma">Ning Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Lee J" sort="Johnston, Lee J" uniqKey="Johnston L" first="Lee J" last="Johnston">Lee J. Johnston</name>
<affiliation wicri:level="2">
<nlm:affiliation>West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Chaodong" sort="Wu, Chaodong" uniqKey="Wu C" first="Chaodong" last="Wu">Chaodong Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Nutrition and Food Science, Texas A&M University, College Station, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xi" sort="Ma, Xi" uniqKey="Ma X" first="Xi" last="Ma">Xi Ma</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Medicinal research reviews</title>
<idno type="eISSN">1098-1128</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In a complex, diverse intestinal environment, commensal microbiota metabolizes excessive dietary tryptophan to produce more bioactive metabolites connecting with kinds of diverse process, such as host physiological defense, homeostasis, excessive immune activation and the progression and outcome of different diseases, such as inflammatory bowel disease, irritable bowel syndrome and others. Although commensal microbiota includes bacteria, fungi, and protozoa and all that, they often have the similar metabolites in tryptophan metabolism process via same or different pathways. These metabolites can work as signal to activate the innate immunity of intestinal mucosa and induce the rapid inflammation response. They are critical in reconstruction of lumen homeostasis as well. This review aims to seek the potential function and mechanism of microbiota-derived tryptophan metabolites as targets to regulate and shape intestinal immune function, which mainly focused on two aspects. First, analyze the character of tryptophan metabolism in bacteria, fungi, and protozoa, and assess the functions of their metabolites (including indole and eight other derivatives, serotonin (5-HT) and d-tryptophan) on regulating the integrity of intestinal epithelium and the immunity of the intestinal mucosa. Second, focus on the mediator and pathway for their recognition, transfer and crosstalk between microbiota-derived tryptophan metabolites and intestinal mucosal immunity. Disruption of intestinal homeostasis has been described in different intestinal inflammatory diseases, available data suggest the remarkable potential of tryptophan-derived aryl hydrocarbon receptor agonists, indole derivatives on lumen equilibrium. These metabolites as preventive and therapeutic interventions have potential to promote proinflammatory or anti-inflammatory responses of the gut.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33174230</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-1128</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Medicinal research reviews</Title>
<ISOAbbreviation>Med Res Rev</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/med.21752</ELocationID>
<Abstract>
<AbstractText>In a complex, diverse intestinal environment, commensal microbiota metabolizes excessive dietary tryptophan to produce more bioactive metabolites connecting with kinds of diverse process, such as host physiological defense, homeostasis, excessive immune activation and the progression and outcome of different diseases, such as inflammatory bowel disease, irritable bowel syndrome and others. Although commensal microbiota includes bacteria, fungi, and protozoa and all that, they often have the similar metabolites in tryptophan metabolism process via same or different pathways. These metabolites can work as signal to activate the innate immunity of intestinal mucosa and induce the rapid inflammation response. They are critical in reconstruction of lumen homeostasis as well. This review aims to seek the potential function and mechanism of microbiota-derived tryptophan metabolites as targets to regulate and shape intestinal immune function, which mainly focused on two aspects. First, analyze the character of tryptophan metabolism in bacteria, fungi, and protozoa, and assess the functions of their metabolites (including indole and eight other derivatives, serotonin (5-HT) and d-tryptophan) on regulating the integrity of intestinal epithelium and the immunity of the intestinal mucosa. Second, focus on the mediator and pathway for their recognition, transfer and crosstalk between microbiota-derived tryptophan metabolites and intestinal mucosal immunity. Disruption of intestinal homeostasis has been described in different intestinal inflammatory diseases, available data suggest the remarkable potential of tryptophan-derived aryl hydrocarbon receptor agonists, indole derivatives on lumen equilibrium. These metabolites as preventive and therapeutic interventions have potential to promote proinflammatory or anti-inflammatory responses of the gut.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals LLC.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5010-0833</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Shengwei</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Ning</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6473-595X</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnston</LastName>
<ForeName>Lee J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Chaodong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xi</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-4562-9331</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018YFD0500601 and 2017YFD0500501</GrantID>
<Agency>National Key R&D Program of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31930106</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31829004</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31722054</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Med Res Rev</MedlineTA>
<NlmUniqueID>8103150</NlmUniqueID>
<ISSNLinking>0198-6325</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">intestinal inflammatory diseases</Keyword>
<Keyword MajorTopicYN="N">microbes</Keyword>
<Keyword MajorTopicYN="N">mucosal immunity</Keyword>
<Keyword MajorTopicYN="N">tryptophan metabolites</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>2</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33174230</ArticleId>
<ArticleId IdType="doi">10.1002/med.21752</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Ma N, Guo P, Zhang J, et al. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front Immunol. 2018;9:5.</Citation>
</Reference>
<Reference>
<Citation>Rath CM, Dorrestein PC. The bacterial chemical repertoire mediates metabolic exchange within gut microbiomes. Curr Opin Microbiol. 2012;15(2):147-154.</Citation>
</Reference>
<Reference>
<Citation>Shibata N, Kunisawa J, Kiyono H. Dietary and microbial metabolites in the regulation of host immunity. Front Microbiol. 2017;8:2171.</Citation>
</Reference>
<Reference>
<Citation>Kim CH. Immune regulation by microbiome metabolites. Immunology. 2018;154(2):220-229.</Citation>
</Reference>
<Reference>
<Citation>Ma N, Ma X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects. Compr Rev Food Sci Food Saf. 2019;18(1):221-242.</Citation>
</Reference>
<Reference>
<Citation>Dodd D, Spitzer MH, Van Treuren W, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648-652.</Citation>
</Reference>
<Reference>
<Citation>Kepert I, Fonseca J, Müller C, et al. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol. 2017;139(5):1525-1535.</Citation>
</Reference>
<Reference>
<Citation>Choera T, Zelante T, Romani L, Keller NP. A multifaceted role of tryptophan metabolism and indoleamine 2,3-dioxygenase activity in aspergillus fumigatus-host interactions. Front Immunol. 2018;8:1996.</Citation>
</Reference>
<Reference>
<Citation>Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372-385.</Citation>
</Reference>
<Reference>
<Citation>McGettrick AF, Corcoran SE, Barry PJG, et al. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion. Proc Natl Acad Sci USA. 2016;113(48):E7778-E7787.</Citation>
</Reference>
<Reference>
<Citation>Fernstrom JD. A Perspective on the safety of supplemental tryptophan based on its metabolic fates. J Nutr. 2016;146(12):2601S-2608S.</Citation>
</Reference>
<Reference>
<Citation>Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268-1273.</Citation>
</Reference>
<Reference>
<Citation>Tyler CJ, McCarthy NE, Lindsay JO, Stagg AJ, Moser B, Eberl M. Antigen-presenting human γδ t cells promote intestinal CD4+ T cell expression of IL-22 and mucosal release of calprotectin. J Immunol. 2017;198(9):3417-3425.</Citation>
</Reference>
<Reference>
<Citation>Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity. 2012;37(4):601-610.</Citation>
</Reference>
<Reference>
<Citation>Leavy O. Mucosal immunology: the 'AHR diet' for mucosal homeostasis. Nat Rev Immunol. 2011;11(12):806.</Citation>
</Reference>
<Reference>
<Citation>Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.</Citation>
</Reference>
<Reference>
<Citation>Chami B, Yeung AW, van Vreden C, King NJ, Bao S. The role of CXCR3 in DSS-induced colitis. PLOS One. 2014;9(7): e101622.</Citation>
</Reference>
<Reference>
<Citation>Nikolaus S, Schulte B, Al-Massad N, et al. Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology. 2017;153:1504-1516.</Citation>
</Reference>
<Reference>
<Citation>Trumbo P, Schlicker S, Yates AA, Poos M. Food and nutrition board of the institute of medicine, the national academies. dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. J Am Diet Assoc. 2002;102(11):1621-1630.</Citation>
</Reference>
<Reference>
<Citation>Ogden CL, Fryar CD, Carroll MD, Flegal KM. Mean body weight, height, and body mass index, United States 1960-2002. Adv Data. 2004;347:1-17.</Citation>
</Reference>
<Reference>
<Citation>Lieberman HR, Agarwal S, Fulgoni VL, 3rd. Tryptophan intake in the us adult population is not related to liver or kidney function but is associated with depression and sleep Outcomes. J Nutr. 2016;146(12):2609S-2615S.</Citation>
</Reference>
<Reference>
<Citation>Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984;30(3):426-432.</Citation>
</Reference>
<Reference>
<Citation>Ferrarini A, Righetti L, Martínez MP, et al. Discriminant biomarkers of acute respiratory distress syndrome associated to H1N1 influenza identified by metabolomics HPLC-QTOF-MS/MS platform. Electrophoresis. 2017;38(18):2341-2348.</Citation>
</Reference>
<Reference>
<Citation>Tsavkelova EA, Klimova Siu, Cherdyntseva TA, Netrusov AI. Microbial producers of plant growth stimulators and their practical use: a review. Prikl Biokhim Mikrobiol. 2006;42(2):133-143.</Citation>
</Reference>
<Reference>
<Citation>Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. https://doi.org/10.1038/s41467-018-05470-4</Citation>
</Reference>
<Reference>
<Citation>Dong F, Hao F, Murray IA, et al. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes. 2020;12(1):1-24.</Citation>
</Reference>
<Reference>
<Citation>Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.</Citation>
</Reference>
<Reference>
<Citation>Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180.</Citation>
</Reference>
<Reference>
<Citation>Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405-416.</Citation>
</Reference>
<Reference>
<Citation>Leonardi I, Li X, Iliev ID. Macrophage interactions with fungi and bacteria in inflammatory bowel disease. Curr Opin Gastroenterol. 2018;34(6):392-397.</Citation>
</Reference>
<Reference>
<Citation>Leonardi I, Li X, Semon A, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi. Science. 2018;359(6372):232-236.</Citation>
</Reference>
<Reference>
<Citation>Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314-1317.</Citation>
</Reference>
<Reference>
<Citation>Ott SJ, Kühbacher T, Musfeldt M, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43(7):831-841.</Citation>
</Reference>
<Reference>
<Citation>Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2008;2(12):1183-1193.</Citation>
</Reference>
<Reference>
<Citation>Standaert-Vitse A, Sendid B, Joossens M, et al. Candida albicans colonization and ASCA in familial Crohn's disease. Am J Gastroenterol. 2009;104(7):1745-1753.</Citation>
</Reference>
<Reference>
<Citation>Angebault C, Djossou F, Abélanet S, et al. Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J Infect Dis. 2013;208(10):1705-1716.</Citation>
</Reference>
<Reference>
<Citation>Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLOS One. 2013;8(8):e71806. https://doi.org/10.1371/journal.pone.0071806</Citation>
</Reference>
<Reference>
<Citation>Wheeler ML, Limon JJ, Bar AS, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19(6):865-873.</Citation>
</Reference>
<Reference>
<Citation>Tsavkelova E, Oeser B, Oren-Young L, et al. Identification and functional characterization of indole-3-acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genet Biol. 2012;49(1):48-57.</Citation>
</Reference>
<Reference>
<Citation>Pumin N, Nantana S, Panarat A, Savitree L. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum. Arch Microbiol. 2016;198(5):429-437.</Citation>
</Reference>
<Reference>
<Citation>Audebert C, Even G, Cian A, Loywick A, Merlin S, Viscogliosi E, Chabé M, The Blastocystis Investigation Group. Colonization with the enteric protozoa blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep. 2016;6:25255. https://doi.org/10.1038/srep25255.ci</Citation>
</Reference>
<Reference>
<Citation>Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral gene transfer in the adaptation of the anaerobic parasite blastocystis to the gut. Curr Biol. 2017;27(6):807-820.</Citation>
</Reference>
<Reference>
<Citation>Moreira D, López-García P. Protist evolution: stealing genes to gut it out. Curr Biol. 2017;27(6):R223-R225.</Citation>
</Reference>
<Reference>
<Citation>Nývltová E, Šut'ák R, Žárský V, Harant K, Hrdý I, Tachezy J. Lateral gene transfer of p-cresol- and indole-producing enzymes from environmental bacteria to Mastigamoeba balamuthi. Environ Microbiol. 2017;19(3):1091-1102.</Citation>
</Reference>
<Reference>
<Citation>Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. Are human intestinal eukaryotes beneficial or commensals? PLOS Pathog. 2015;11(8):e1005039. https://doi.org/10.1371/journal.ppat.1005039</Citation>
</Reference>
<Reference>
<Citation>Chabé M, Lokmer A, Ségurel L. Gut protozoa: friends or foes of the human gut microbiota? Trends Parasitol. 2017;33(12):925-934.</Citation>
</Reference>
<Reference>
<Citation>Broadhurst MJ, Ardeshir A, Kanwar B, et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLOS Pathog. 2012;8(11):e1003000.</Citation>
</Reference>
<Reference>
<Citation>Ramanan D, Bowcutt R, Lee SC, et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352(6285):608-612.</Citation>
</Reference>
<Reference>
<Citation>Reynolds LA, Finlay BB, Maizels RM. Cohabitation in the intestine: interactions among helminth parasites, bacterial microbiota, and host immunity. J Immunol. 2015;195(9):4059-4066.</Citation>
</Reference>
<Reference>
<Citation>Stibbs HH, Seed JR. Short-term metabolism of (14-C) tryptophan in rats infected with Trypanosoma brucei gambiense. J Infect Dis. 1975;131(4):459-462.</Citation>
</Reference>
<Reference>
<Citation>Chudnovskiy A, Mortha A, Kana V, et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell. 2016;2:444-456. https://doi.org/10.1016/j.cell.2016.08.076</Citation>
</Reference>
<Reference>
<Citation>Jennis M, Cavanaugh CR, Leo GC, Mabus JR, Lenhard J, Hornby PJ. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil. 2018;30(2):e13178. https://doi.org/10.1111/nmo.13178</Citation>
</Reference>
<Reference>
<Citation>Whitfield-Cargile CM, Cohen ND, Chapkin RS, et al. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes. 2016;7(3):246-261.</Citation>
</Reference>
<Reference>
<Citation>Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Treds Microbiol. 2015;23(11):707-718.</Citation>
</Reference>
<Reference>
<Citation>Newton WA, Snell EE. Formation and interrelationships of tryptophanase and tryptophan synthetases in Escherichia coli. J Bacteriol. 1965;89:355-364.</Citation>
</Reference>
<Reference>
<Citation>Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010;107(1):228-233.</Citation>
</Reference>
<Reference>
<Citation>Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH. Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol. 2009;191(11):3504-3516.</Citation>
</Reference>
<Reference>
<Citation>Kim J, Park W. Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. Microbiology. 2013;159(Pt12):2616-2625.</Citation>
</Reference>
<Reference>
<Citation>Hidalgo-Romano B, Gollihar J, Brown SA, et al. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. Microbiology. 2014;160(Pt11):2464-2473.</Citation>
</Reference>
<Reference>
<Citation>Park HY, Bae EA, Han MJ, Choi EC, Kim DH. Inhibitory effects of Bifidobacterium spp. isolated from a healthy Korean on harmful enzymes of human intestinal microflora. Arch Pharm Res. 1998;21(1):54-61.</Citation>
</Reference>
<Reference>
<Citation>Vega NM, Allison KR, Khalil AS, Collins JJ. Signaling-mediated bacterial persister formation. Nat Chem Biol. 2012;8(5):431-433.</Citation>
</Reference>
<Reference>
<Citation>Sun M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit Rev Food Sci Nutr. 2019;60:1-9.</Citation>
</Reference>
<Reference>
<Citation>Chimerel C, Murray AJ, Oldewurtel ER, Summers DK, Keyser UF. The effect of bacterial signal indole on the electrical properties of lipid membranes. ChemPhysChem. 2013;14(2):417-423.</Citation>
</Reference>
<Reference>
<Citation>Piñero-Fernandez S, Chimerel C, Keyser UF, Summers DK. Indole transport across Escherichia coli membranes. J Bacteriol. 2011;193(8):1793-1798.</Citation>
</Reference>
<Reference>
<Citation>Chimerel C, Field CM, Piñero-Fernandez S, Keyser UF, Summers DK. Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim Biophys Acta. 2012;1818(7):1590-1594.</Citation>
</Reference>
<Reference>
<Citation>Huc T, Konop M, Onyszkiewicz M, et al. Colonic indole, gut bacteria metabolite of tryptophan, increases portal blood pressure in rats. Am J Physiol Regul Integr Comp Physiol. 2018;315(4):R646-R655.</Citation>
</Reference>
<Reference>
<Citation>Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41(2):296-310.</Citation>
</Reference>
<Reference>
<Citation>Ma X, Chen J, Tian Y. Pregnane X receptor as the “sensor and effector” in regulating epigenome. J Cell Physiol. 2015;230(4):752-757.</Citation>
</Reference>
<Reference>
<Citation>Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9(4):1202-1208.</Citation>
</Reference>
<Reference>
<Citation>Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradfield CA. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA. 1991;88(21):9543-9547.</Citation>
</Reference>
<Reference>
<Citation>Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos. 2015;43(10):1522-1535.</Citation>
</Reference>
<Reference>
<Citation>Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol. 2012;20(9):449-458.</Citation>
</Reference>
<Reference>
<Citation>Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319-346.</Citation>
</Reference>
<Reference>
<Citation>D'Almeida RE, Molina RDI, Viola CM, et al. Comparison of seven structurally related coumarins on the inhibition of quorum sensing of pseudomonas aeruginosa and chromobacterium violaceum. Bioorg Chem. 2017;73:37-42.</Citation>
</Reference>
<Reference>
<Citation>Chu W, Zere TR, Weber MM, et al. Indole production promotes Escherichia coli mixed-culture growth with pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol. 2012;78(2):411-419.</Citation>
</Reference>
<Reference>
<Citation>Lee JH(a), Kim YG, Cho MH, Kim JA, Lee J. 7-fluoroindole as an antivirulence compound against pseudomonas aeruginosa. FEMS Microbiol Lett. 2012;329(1):36-44.</Citation>
</Reference>
<Reference>
<Citation>Biswas NN, Kutty SK, Barraud N, et al. Indole-based novel small molecules for the modulation of bacterial signalling pathways. Org Biomol Chem. 2015;13(3):925-937.</Citation>
</Reference>
<Reference>
<Citation>Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol. 2005;55(4):1113-1126.</Citation>
</Reference>
<Reference>
<Citation>Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature. 2010;467(7311):82-85.</Citation>
</Reference>
<Reference>
<Citation>Kwan BW, Osbourne DO, Hu Y, Benedik MJ, Wood TK. Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnol Bioeng. 2015;112(3):588-600.</Citation>
</Reference>
<Reference>
<Citation>Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009;21:1239-1249.</Citation>
</Reference>
<Reference>
<Citation>Yisireyili M, Takeshita K, Saito S, Murohara T, Niwa T. Indole-3-propionic acid suppresses indoxyl sulfate-induced expression of fibrotic and inflammatory genes in proximal tubular cells. Nagoya J Med Sci. 2017;79(4):477-486.</Citation>
</Reference>
<Reference>
<Citation>Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol. 1999;56(6):1329-1339.</Citation>
</Reference>
<Reference>
<Citation>Schroeder JC, Dinatale BC, Murray IA, et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry. 2010;49(2):393-400.</Citation>
</Reference>
<Reference>
<Citation>Barnes KJ, Rowland A, Polasek TM, Miners JO. Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. Eur J Clin Pharmacol. 2014;70(9):1097-1106.</Citation>
</Reference>
<Reference>
<Citation>Hanada K, Ogawa R, Son K, et al. Effects of indoxylsulfate on the in vitro hepatic metabolism of various compounds using human liver microsomes and hepatocytes. Nephron Physiol. 2006;4:p179-p186.</Citation>
</Reference>
<Reference>
<Citation>Liu H, Narayanan R, Hoffmann M, Surapaneni S. The uremic toxin indoxyl-3-sulfate induces CYP1A2 in primary human hepatocytes. Drug Metab Lett. 2016;10(3):195-199.</Citation>
</Reference>
<Reference>
<Citation>Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y. Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J Immunol. 2018;201(12):3683-3693.</Citation>
</Reference>
<Reference>
<Citation>Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: a therapeutic target to reduce intestinal inflammation. Med Res Rev. 2020;40(2):606-632.</Citation>
</Reference>
<Reference>
<Citation>Cervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science. 2017;357(6353):806-810.</Citation>
</Reference>
<Reference>
<Citation>Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585-589.</Citation>
</Reference>
<Reference>
<Citation>Aoki-Yoshida A, Ichida K, Aoki R, Kawasumi T, Suzuki C, Takayama Y. Prevention of UVB-induced production of the inflammatory mediator in human keratinocytes by lactic acid derivatives generated from aromatic amino acids. Biosci Biotechnol Biochem. 2013;77(8):1766-1768.</Citation>
</Reference>
<Reference>
<Citation>O'Connell DJ, Kolde R, Sooknah M, et al. Simultaneous pathway activity inference and gene expression analysis using RNA sequencing. Cell Syst. 2016;2(5):323-334.</Citation>
</Reference>
<Reference>
<Citation>Matthews ML, He L, Horning BD, et al. Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nat Chem. 2017;9(3):234-243.</Citation>
</Reference>
<Reference>
<Citation>Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25-37. e6.</Citation>
</Reference>
<Reference>
<Citation>Selwyn FP, Cheng SL, Bammler TK, et al. Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol Sci. 2015;147(1):84-103.</Citation>
</Reference>
<Reference>
<Citation>Zhang T, Kimura Y, Jiang S, Harada K, Yamashita Y, Ashida H. Luteolin modulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells. Arch Biochem Biophys. 2014;557:36-46.</Citation>
</Reference>
<Reference>
<Citation>Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by clostridia. Arch Microbiol. 1976;107:283-288.</Citation>
</Reference>
<Reference>
<Citation>Menni C, Hernandez MM, Vital M, Mohney RP, Spector TD, Valdes AM. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes. 2019;10(6):688-695.</Citation>
</Reference>
<Reference>
<Citation>Pavlova T, Vidova V, Bienertova-Vasku J, et al. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal Chim Acta. 2017;987:72-80.</Citation>
</Reference>
<Reference>
<Citation>Galligan JJ. Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol Motil. 2018;30(2):e13283. https://doi.org/10.1111/nmo.13283</Citation>
</Reference>
<Reference>
<Citation>Barrenetxe J, Sánchez O, Barber A, Gascón S, Rodríguez-Yoldi MJ, Lostao MP. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2. Cytokine. 2013;64(1):181-187.</Citation>
</Reference>
<Reference>
<Citation>Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716-724.</Citation>
</Reference>
<Reference>
<Citation>Lanis JM, Alexeev EE, Curtis VF, et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 2017;10(5):1133-1144.</Citation>
</Reference>
<Reference>
<Citation>Kominsky DJ, Campbell EL, Ehrentraut SF, et al. IFN-gammamediated induction of an apical IL-10 receptor on polarized intestinal epithelia. J Immunol. 2014;192:1267-1276.</Citation>
</Reference>
<Reference>
<Citation>Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586-597.</Citation>
</Reference>
<Reference>
<Citation>He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 2017;44(2):532-553.</Citation>
</Reference>
<Reference>
<Citation>Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol. 1996;42(3):207-220.</Citation>
</Reference>
<Reference>
<Citation>Takei M, Kogure S, Yokoyama C, Kouzuma Y, Suzuki Y. Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland. Biosci Biotechnol Biochem. 2019;83(1):129-136.</Citation>
</Reference>
<Reference>
<Citation>Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288-302.</Citation>
</Reference>
<Reference>
<Citation>Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598-605.</Citation>
</Reference>
<Reference>
<Citation>Nowak A, Libudzisz Z. Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria. Anaerobe. 2006;12(2):80-84.</Citation>
</Reference>
<Reference>
<Citation>Yokoyama MT, Carlson JR. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am J Clin Nutr. 1979;32(1):173-178.</Citation>
</Reference>
<Reference>
<Citation>Yoo JY, Jang EY, Jeong SY, Hwang DY, Son HJ. Bacterial indoleacetic acid-induced synthesis of colloidal Ag2O nanocrystals and their biological activities. Bioprocess Biosyst Eng. 2019;42(3):401-414.</Citation>
</Reference>
<Reference>
<Citation>Jin UH, Lee SO, Sridharan G, et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol Pharmacol. 2014;85(5):777-788.</Citation>
</Reference>
<Reference>
<Citation>Miller CA, 3rd.Expression of the human aryl hydrocarbon receptor complex in yeast. Activation of transcription by indole compounds. J Biol Chem. 1997;272(52):32824-32829.</Citation>
</Reference>
<Reference>
<Citation>Lee JH(b), Kim YG, Kim CJ, Lee JC, Cho MH, Lee J. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl Microbiol Biotechnol. 2012;96(4):1071-1078.</Citation>
</Reference>
<Reference>
<Citation>Hou Q, Ye L, Liu H, et al. Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 2018;25(9):1657-1670.</Citation>
</Reference>
<Reference>
<Citation>Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141(1):237-248.</Citation>
</Reference>
<Reference>
<Citation>Kiss EA, Vonarbourg C. Aryl hydrocarbon receptor: a molecular link between postnatal lymphoid follicle formation and diet. Gut Microbes. 2012;3(6):577-582.</Citation>
</Reference>
<Reference>
<Citation>Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168(5):928-943.</Citation>
</Reference>
<Reference>
<Citation>Suzuki A, Hanada T, Mitsuyama K, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med. 2001;193:471-481.</Citation>
</Reference>
<Reference>
<Citation>Anderson GM. Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography. J Chromatogr. 1975;105(2):323-328.</Citation>
</Reference>
<Reference>
<Citation>Marcobal A, Kashyap PC, Nelson TA, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7(10):1933-1943.</Citation>
</Reference>
<Reference>
<Citation>Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16(4):495-503.</Citation>
</Reference>
<Reference>
<Citation>Kaji I, Akiba Y, Said H, Narimatsu K, Kaunitz JD. Luminal 5-HT stimulates colonic bicarbonate secretion in rats. Br J Pharmacol. 2015;172(19):4655-4670.</Citation>
</Reference>
<Reference>
<Citation>Hoffman JM, Tyler K, MacEachern SJ, et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology. 2012;142(4):844-854.</Citation>
</Reference>
<Reference>
<Citation>Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe. 2018;23(6):775-785.</Citation>
</Reference>
<Reference>
<Citation>Go RE, Hwang KA, Choi KC. Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 2015;147:24-30.</Citation>
</Reference>
<Reference>
<Citation>Robson MJ, Quinlan MA, Blakely RD. Immune system activation and depression: roles of serotonin in the central nervous system and periphery. ACS Chem Neurosci. 2017;8(5):932-942.</Citation>
</Reference>
<Reference>
<Citation>Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264-276.</Citation>
</Reference>
<Reference>
<Citation>Roshchina VV. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. Adv Exp Med Biol. 2010;874:25-77.</Citation>
</Reference>
<Reference>
<Citation>Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol. 2018;15(12):765-784.</Citation>
</Reference>
<Reference>
<Citation>Hagbom M, Istrate C, Engblom D, et al. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog. 2011;7: e1002115.</Citation>
</Reference>
<Reference>
<Citation>Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232-236.</Citation>
</Reference>
<Reference>
<Citation>Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):14-21.</Citation>
</Reference>
<Reference>
<Citation>Shajib MS, Baranov A, Khan WI. Diverse effects of gut-derived serotonin in intestinal inflammation. ACS Chem Neurosci. 2017;8(5):920-931. https://doi.org/10.1021/acschemneuro.6b00414</Citation>
</Reference>
<Reference>
<Citation>Dong Y, Wang Z, Qin Z, Cao J, Chen Y. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea. J Mol Histol. 2017;49(1):85-97.</Citation>
</Reference>
<Reference>
<Citation>Oleskin AV, Kirovskaia TA, Botvinko IV, Lysak LV. Effect of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Mikrobiologiia. 1998;67(3):305-312.</Citation>
</Reference>
<Reference>
<Citation>Guseva D, Holst K, Kaune B, et al. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis. 2014;20(9):1516-1529.</Citation>
</Reference>
<Reference>
<Citation>Yang GB, Lackner AA. Proximity between 5-HT secreting enteroendocrine cells and lymphocytes in the gut mucosa of rhesus macaques (Macaca mulatta) is suggestive of a role for enterochrornaffin cell 5-HT in mucosal immunity. J Neuroimmunol. 2004;146:46-49.</Citation>
</Reference>
<Reference>
<Citation>Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015;213(3):561-574.</Citation>
</Reference>
<Reference>
<Citation>Bailey C, Ruaux C, Stang BV, Valentine BA. Expression of serotonin, chromogranin-A, serotonin receptor-2B, tryptophan hydroxylase-1, and serotonin reuptake transporter in the intestine of dogs with chronic enteropathy. J Vet Diagn Invest. 2016;28(3):271-278.</Citation>
</Reference>
<Reference>
<Citation>Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science. 2010;328(5978):627-629.</Citation>
</Reference>
<Reference>
<Citation>Kao WT, Frye M, Gagnon P, Vogel JP, Chole R. D-amino acids do not inhibit pseudomonas aeruginosa biofilm formation. Laryngoscope Investig Otolaryngol. 2017;2(1):4-9.</Citation>
</Reference>
<Reference>
<Citation>Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35:119-147.</Citation>
</Reference>
<Reference>
<Citation>Edwards LA, Bajaj-Elliott M, Klein NJ, Murch SH, Phillips AD. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli. PLOS One. 2011;6(10):e27030.</Citation>
</Reference>
<Reference>
<Citation>Bellono NW, Bayrer JR, Leitch DB, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell. 2017;170(1):185-198.</Citation>
</Reference>
<Reference>
<Citation>Engevik MA, Luk B, Chang-Graham AL, et al. Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. mBio. 2019;10(3):e01087-19.</Citation>
</Reference>
<Reference>
<Citation>Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity. 2018;49(1):33-41.</Citation>
</Reference>
<Reference>
<Citation>McDole JR, Wheeler LW, McDonald KG, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345-349.</Citation>
</Reference>
<Reference>
<Citation>Layunta E, Latorre E, Forcén R, et al. NOD2 modulates serotonin transporter and interacts with TLR2 and TLR4 in intestinal epithelial cells. Cell Physiol Biochem. 2018;47(3):1217-1229.</Citation>
</Reference>
<Reference>
<Citation>Wang H, Steeds J, Motomura Y, et al. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut. 2007;56(7):949-957.</Citation>
</Reference>
<Reference>
<Citation>Reigstad CS, Salmonson CE, Rainey JF 3rd, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395-1403.</Citation>
</Reference>
<Reference>
<Citation>Johansson ME, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16(10):639-649.</Citation>
</Reference>
<Reference>
<Citation>Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8(1):198-210.</Citation>
</Reference>
<Reference>
<Citation>Howitt MR, Lavoie S, Michaud M, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351(6279):1329-1333.</Citation>
</Reference>
<Reference>
<Citation>Gerbe F, Sidot E, Smyth DJ, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 2016;529(7585):226-230.</Citation>
</Reference>
<Reference>
<Citation>Cheng X, Voss U, Ekblad E. A novel serotonin-containing tuft cell subpopulation in mouse intestine. Cell Tissue Res. 2019;376(2):189-197.</Citation>
</Reference>
<Reference>
<Citation>Bezençon C, Fürholz A, Raymond F, Mansourian R, Métairon S, Le J. Coutre, et al. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol. 2008;509:514-525.</Citation>
</Reference>
<Reference>
<Citation>Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci. 2012;33(6):323-330.</Citation>
</Reference>
<Reference>
<Citation>Apetoh L, Quintana FJ, Pot C, et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol. 2010;11(9):854-861.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147(3):629-640.</Citation>
</Reference>
<Reference>
<Citation>Goettel JA, Gandhi R, Kenison JE, et al. AHR activation is protective against colitis driven by t cells in humanized mice. Cell Rep. 2016;17(5):1318-1329.</Citation>
</Reference>
<Reference>
<Citation>Khan WI, Ghia JE. Gut hormones: emerging role in immune activation and inflammation. Clin Exp Immunol. 2010;161(1):19-27.</Citation>
</Reference>
<Reference>
<Citation>Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106(10):3698-3703.</Citation>
</Reference>
<Reference>
<Citation>Yang T, Liu Q, Cheng Y, et al. Discovery of tertiary amine and indole derivatives as potent RORγt inverse agonists. ACS Med Chem Lett. 2014;5(1):65-68.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Xue X, Jin X, et al. Discovery of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide derivatives as new RORγ inhibitors using virtual screening, synthesis and biological evaluation. Eur J Med Chem. 2014;78:431-441.</Citation>
</Reference>
<Reference>
<Citation>Gribar SC, Anand RJ, Sodhi CP, Hackam DJ. The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc Biol. 2008;83(3):493-498.</Citation>
</Reference>
<Reference>
<Citation>Ma N, He T, Johnston LJ, Ma X. Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes. 2020;13:1-17.</Citation>
</Reference>
<Reference>
<Citation>Pernomian L, Duarte-Silva M, de Barros Cardoso CR. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor. Clin Rev Allergy Immunol. 2020:11. https://doi.org/10.1007/s12016-020-08789-3</Citation>
</Reference>
<Reference>
<Citation>Shin JH, Lee YK, Shon WJ, et al. Gut microorganisms and their metabolites modulate the severity of acute colitis in a tryptophan metabolism-dependent manner. Eur J Nutr. 2020:13. https://doi.org/10.1007/s00394-020-02194-4</Citation>
</Reference>
<Reference>
<Citation>Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957-2563.</Citation>
</Reference>
<Reference>
<Citation>Zhao XQ, Zhu LL, Chang Q, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289(43):30052-30062.</Citation>
</Reference>
<Reference>
<Citation>Coqueiro AY, Raizel R, Bonvini A, Tirapegui J, Rogero MM. Probiotics for inflammatory bowel diseases: a romising adjuvant treatment. Int J Food Sci Nutr. 2019;70(1):20-29.</Citation>
</Reference>
<Reference>
<Citation>Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res Int. 2015;2015:505878-15. https://doi.org/10.1155/2015/505878</Citation>
</Reference>
<Reference>
<Citation>Abraham BP, Quigley EMM. Probiotics in inflammatory bowel disease. Gastroenterol Clin N Am. 2017;46(4):769-782.</Citation>
</Reference>
<Reference>
<Citation>Lichtenstein L, Avni-Biron I, Ben-Bassat O. Probiotics and prebiotics in Crohn's disease therapies. Best Pract Res Clin Gastroenterol. 2016;30(1):81-88.</Citation>
</Reference>
<Reference>
<Citation>Heath-Pagliuso S, Rogers WJ, Tullis K, et al. Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry. 1998;37(33):11508-11515.</Citation>
</Reference>
<Reference>
<Citation>Lee JH, Cho MH, Lee J. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and pseudomonas aeruginosa virulence. Environ Microbiol. 2011;13(1):62-73.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
<li>Texas</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
</noRegion>
<name sortKey="Ma, Ning" sort="Ma, Ning" uniqKey="Ma N" first="Ning" last="Ma">Ning Ma</name>
<name sortKey="Ma, Xi" sort="Ma, Xi" uniqKey="Ma X" first="Xi" last="Ma">Xi Ma</name>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<name sortKey="Zhu, Shengwei" sort="Zhu, Shengwei" uniqKey="Zhu S" first="Shengwei" last="Zhu">Shengwei Zhu</name>
</country>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Johnston, Lee J" sort="Johnston, Lee J" uniqKey="Johnston L" first="Lee J" last="Johnston">Lee J. Johnston</name>
</region>
<name sortKey="Wu, Chaodong" sort="Wu, Chaodong" uniqKey="Wu C" first="Chaodong" last="Wu">Chaodong Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33174230
   |texte=   Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33174230" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020